Using Machine Learning Methods to Predict the ß-Poly (L-Malic Acid) Production by Different Substrates Addition and Secondary Indexes in Strain Aureobasidium melanogenum

Author:

Wang GenanORCID,Li Jiaqian,Wang Shuxian,Li Yutong,Chen Shiwei,Zhang Lina,Zhao Tingbin,Yin Haisong,Jia Shiru,Qiao Changsheng

Abstract

ß-poly (L-malic acid) (PMLA) is a polyester ligated by malate subunits. It has a wide prospective application as an anti-cancer drug carrier, and its malate subunits have a great application in the food industry. The strain Aureoabsidium melanogenum could produce a high amount of PMLA during fermentation, and different substrates addition could influence the production. In this study, we directly added potassium acetate, corn steep liquor, MgSO4, MnSO4, vitamin B1, vitamin B2, and nicotinamide as the fermentation substrate to the basic fermentation medium based on a generated random matrix that represented the added value. The PMLA production and four secondary indexes, pH, biomass, osmotic pressure, and viscosity were measured after 144 h fermentation. Finally, a total of 212 samples were collected as the dataset, by which the machine learning methods were deployed to predict the PMLA production by different substrates’ concentrations and the secondary indexes. The results indicated that PMLA production was negatively correlated with corn steep liquor and betaine and positively correlated with potassium acetate. The PMLA production could be predicted using all different substrates’ concentrations with a Mean Absolute Error (MAE) of 4.164 g/L and with an MAE of 6.556 g/L by different secondary indexes. Finally, the convolutional neural network (CNN) was applied to predict the PMLA production by fermentation medium images, in which the collected images were categorized into three groups, 0–20 g/L, 21–40 g/L, and >41 g/L, based on the PMLA production. The CNN model could predict the production with high accuracy. The methods and results presented in this study provided new insight into evaluating different substrates concentration on PMLA production and demonstrating the possibility of using the convolutional neural network model in the PMLA fermentation industry.

Funder

Key R & D program of Ningxia Hui Autonomous Region

Tianjin Science and Technology planning project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3