Affiliation:
1. 0000 0001 0775 6028 grid.5371.0 Division of Industrial Biotechnology, Department of Biology and Biological Engineering Chalmers University of Technology 412 96 Gothenburg Sweden
2. 0000 0004 0630 0434 grid.424026.6 Chr. Hansen A/S 2970 Hørsholm Denmark
Abstract
Abstract
Lactose conversion by lactic acid bacteria is of high industrial relevance and consistent starter culture quality is of outmost importance. We observed that Lactococcus lactis using the high-affinity lactose-phosphotransferase system excreted galactose towards the end of the lactose consumption phase. The excreted galactose was re-consumed after lactose depletion. The lacS gene, known to encode a lactose permease with affinity for galactose, a putative galactose–lactose antiporter, was upregulated under the conditions studied. When transferring cells from anaerobic to respiration-permissive conditions, lactose-assimilating strains exhibited a long and non-reproducible lag phase. Through systematic preculture experiments, the presence of galactose in the precultures was correlated to short and reproducible lag phases in respiration-permissive main cultivations. For starter culture production, the presence of galactose during propagation of dairy strains can provide a physiological marker for short culture lag phase in lactose-grown cultures.
Funder
Svenska Forskningsrådet Formas
Danish Agency for Science, Technology & Innovation, Innovation fund Denmark
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献