Characterization of digestate microbial community structure following thermophilic anaerobic digestion with varying levels of green and food wastes

Author:

Fernandez-Bayo Jesus D12,Simmons Christopher W2,VanderGheynst Jean S13

Affiliation:

1. grid.27860.3b 0000 0004 1936 9684 Department of Biological and Agricultural Engineering University of California One Shields Ave. 95616 Davis CA USA

2. grid.27860.3b 0000 0004 1936 9684 Department of Food Science and Technology University of California One Shields Ave. 95616 Davis CA USA

3. grid.266686.a 0000000102217463 Department of Bioengineering University of Massachusetts Dartmouth MA USA

Abstract

Abstract The properties of digestates generated through anaerobic digestion are influenced by interactions between the digester microbial communities, feedstock properties and digester operating conditions. This study investigated the effect of varying initial feedstock carbon to nitrogen (C/N) ratios on digestate microbiota and predicted abundance of genes encoding lignocellulolytic activity. The C/N ratio had a significant impact on the digestate microbiome. Feedstocks with intermediate C/N ratio (20–27) (where higher biomethane potential was observed) showed higher relative abundance of archaea compared to feedstocks with C/N ratios at 17 and 34. Within microbial networks, four microbial clusters and eight connector microorganisms changed significantly with the C/N ratio (P < 0.05). Feedstocks with C/N < 23 were richer in organisms from the family Thermotogaceae and genus Caldicoprobacter and enhanced potential for degradation of maltose, galactomannans, melobiose and lactose. This study provides new insights into how anaerobic digestion conditions relate to the structure and functional potential of digester microbial communities, which may be relevant to both digester performance and subsequent utilization of digestates for composting or amending soil.

Funder

UC Davis Sustainability Research and Training Program

National Institute of Food and Agriculture

US Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3