Towards noise robust acoustic insect detection: from the lab to the greenhouse

Author:

Branding JeltoORCID,von Hörsten Dieter,Wegener Jens Karl,Böckmann Elias,Hartung Eberhard

Abstract

AbstractSuccessful and efficient pest management is key to sustainable horticultural food production. While greenhouses already allow digital monitoring and control of their climate parameters, a lack of digital pest sensors hinders the advent of digital pest management systems. To close the control loop, digital systems need to be enabled to directly assess the state of different insect populations in a greenhouse. The presented article investigates the feasibility of acoustic sensors for insect detection in greenhouses. The study is based on an extensive dataset of acoustic insect recordings made with an array of high-quality microphones under noise-shielded conditions. By mixing these noise-free laboratory recordings with environmental sounds recorded with the same equipment in a greenhouse, different signal-to-noise ratios (SNR) are simulated. To explore the possibilities of this unique and novel dataset, two deep-learning models are trained on this simulation data. A simple spectrogram-based model represents the baseline for a comparison with a model capable of processing multi-channel raw audio data. Making use of the unique possibility of the dataset, the models are pre-trained on clean data and fine-tuned on noisy data. Under lab conditions, results show that both models can make use of not just insect flight sounds but also the much quieter sounds of insect movements. First attempts under simulated real-world conditions showed the challenging nature of this task and the potential of spatial filtering. The analysis enabled by the proposed methods for training and evaluation provided valuable insights that should be considered for future work.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Julius Kühn-Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3