Improving the Stability of the Variable Selection with Small Datasets in Classification and Regression Tasks

Author:

Cateni Silvia,Colla ValentinaORCID,Vannucci Marco

Abstract

AbstractWithin the design of a machine learning-based solution for classification or regression problems, variable selection techniques are often applied to identify the input variables, which mainly affect the considered target. The selection of such variables provides very interesting advantages, such as lower complexity of the model and of the learning algorithm, reduction of computational time and improvement of performances. Moreover, variable selection is useful to gain a profound knowledge of the considered problem. High correlation in variables often produces multiple subsets of equally optimal variables, which makes the traditional method of variable selection unstable, leading to instability and reducing the confidence of selected variables. Stability identifies the reproducibility power of the variable selection method. Therefore, having a high stability is as important as the high precision of the developed model. The paper presents an automatic procedure for variable selection in classification (binary and multi-class) and regression tasks, which provides an optimal stability index without requiring any a priori information on data. The proposed approach has been tested on different small datasets, which are unstable by nature, and has achieved satisfactory results.

Funder

Scuola Superiore Sant’Anna

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software

Reference74 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Selection on Imbalanced Domains: A Stability-Based Analysis;Advances and Trends in Artificial Intelligence. Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3