Publisher
Springer Nature Switzerland
Reference37 articles.
1. Ray, P., Reddy, S.S., Banerjee, T.: Various dimension reduction techniques for high dimensional data analysis: a review. Artif. Intell. Rev. 54(5), 3473–3515 (2021). https://doi.org/10.1007/s10462-020-09928-0
2. Bolón-Canedo, V., Alonso-Betanzos, A., Morán-Fernández, L., Cancela, B.: Feature selection: from the past to the future. In: Virvou, M., Tsihrintzis, G.A., Jain, L.C. (eds.) Advances in Selected Artificial Intelligence Areas, Learning and Analytics in Intelligent Systems, vol. 24, pp. 11–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93052-3_2
3. Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143, 106839 (2020)
4. Hambali, M.A., Oladele, T.O., Adewole, K.S.: Microarray cancer feature selection: review, challenges and research directions. Int. J. Cogn. Comput. Eng. 1, 78–97 (2020)
5. Bolón-Canedo, V., Rego-Fernández, D., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-Berdiñas, B., Sánchez-Maroño, N.: On the scalability of feature selection methods on high-dimensional data. Knowl. Inf. Syst. 56(2), 395–442 (2017). https://doi.org/10.1007/s10115-017-1140-3