A Novel Solution of Using Deep Learning for White Blood Cells Classification: Enhanced Loss Function with Regularization and Weighted Loss (ELFRWL)
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software
Link
https://link.springer.com/content/pdf/10.1007/s11063-020-10321-9.pdf
Reference37 articles.
1. Acharya V, Kumar P (2019) Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput 57:1783–1811
2. Ahn D, Kim N, Moon S, Park T, Son S (2014) Optimization of a cell counting algorithm for mobile point-of-care testing platforms. Sensors 14(8):15244–15261
3. Ahn D, Lee J, Moon S, Park T (2018) Human-level blood cell counting on lens-free shadow images exploiting deep neural networks. Analyst 143(22):5380–5387
4. Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852
5. Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M (2018) A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinf 19(1):365
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning-based blood cell classification from microscopic images for haematological disorder identification;Multimedia Tools and Applications;2024-08-01
2. Survey of the loss function in classification models: Comparative study in healthcare and medicine;Multimedia Tools and Applications;2024-06-05
3. An intelligent white blood cell detection and multi-class classification using fine optimal DCRNet;Multimedia Tools and Applications;2024-02-20
4. On the Classification of Cytological Images of Leukocytes Using Depthwise Separable Convolutional Neural Networks;Lecture Notes in Computer Science;2024
5. An Explainable Vision Transformer Model Based White Blood Cells Classification and Localization;Diagnostics;2023-07-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3