1. Keras, SeparableConv2D layer (2023). https://keras.io/api/layers/convolution_layers/separable_convolution2d
2. Acevedo, A., Alférez, S., Merino, A., Puigví, L., Rodellar, J.: Recognition of peripheral blood cell images using convolutional neural networks. Comput. Methods Programs Biomed. 180, 105020 (2019). https://doi.org/10.1016/j.cmpb.2019.105020
3. Ahmad, Z., et al.: Immunology in Medical Biotechnology. In: Anwar, M., Rather, R.A., Farooq, Z. (eds.) Fundamentals and Advances in Medical Biotechnology, pp. 179–207. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-98554-7_6
4. Al-Dulaimi, K.A.K., Banks, J., Chandran, V., Tomeo-Reyes, I., Thanh, K.N.: Classification of white blood cell types from microscope images: techniques and challenges. In: Mendez-Vilas, A., Torres-Hergueta, E. (eds.) Microscopy science: Last approaches on educational programs and applied research (Microscopy Book Series, 8), pp. 17–25. Formatex Research Center, Spain (2018). https://eprints.qut.edu.au/121783/
5. Basnet, J., Alsadoon, A., Prasad, P.W.C., Aloussi, S.A., Alsadoon, O.H.: A novel solution of using deep learning for white blood cells classification: enhanced loss function with regularization and weighted loss (elfrwl). Neural Process. Lett. 52, 1517–1553 (2020). https://doi.org/10.1007/s11063-020-10321-9