GraphSAGE++: Weighted Multi-scale GNN for Graph Representation Learning

Author:

Jiawei E.,Zhang Yinglong,Yang Shangying,Wang Hong,Xia Xuewen,Xu Xing

Abstract

AbstractGraph neural networks (GNNs) have emerged as a powerful tool in graph representation learning. However, they are increasingly challenged by over-smoothing as network depth grows, compromising their ability to capture and represent complex graph structures. Additionally, some popular GNN variants only consider local neighbor information during node updating, ignoring the global structural information and leading to inadequate learning and differentiation of graph structures. To address these challenges, we introduce a novel graph neural network framework, GraphSAGE++. Our model extracts the representation of the target node at each layer and then concatenates all layer weighted representations to obtain the final result. In addition, the strategies combining double aggregations with weighted concatenation are proposed, which significantly enhance the model’s discernment and preservation of structural information. Empirical results on various datasets demonstrate that GraphSAGE++ excels in vertex classification, link prediction, and visualization tasks, surpassing existing methods in effectiveness.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Headmaster Fund of Minnan Normal University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3