1. Allen-Zhu, Z.: Katyusha: the first direct acceleration of stochastic gradient methods. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1200–1205. ACM (2017)
2. Allen-Zhu, Z., Qu, Z., Richtárik, P., Yuan, Y.: Even faster accelerated coordinate descent using non-uniform sampling. In: International Conference on Machine Learning, pp. 1110–1119 (2016)
3. Arnold, S., Manzagol, P., Babanezhad, R., Mitliagkas, I., Roux, N.: Reducing the variance in online optimization by transporting past gradients. arXiv preprint arXiv:1906.03532 (2019)
4. Bertsekas, D.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Optim. Mach. Learn. 2010(1–38), 3 (2011)
5. Blatt, D., Hero, A., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18(1), 29–51 (2007)