On the fast convergence of minibatch heavy ball momentum

Author:

Bollapragada Raghu1,Chen Tyler,Ward Rachel23

Affiliation:

1. Operations Research and Industrial Engineering, The University of Texas at Austin , 204 E. Dean Keeton Street, 78712, TX , USA

2. Mathematics, The University of Texas at Austin , 2515 Speedway, 78712, TX , USA

3. Computational Engineering and Sciences, The University of Texas at Austin , 201 E. 24th Street, 78712, TX , USA

Abstract

Abstract Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size. The algorithm we study can be interpreted as an accelerated randomized Kaczmarz algorithm with minibatching and heavy ball momentum. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical illustrations demonstrating that our bounds are reasonably sharp.

Funder

NSF

AFOSR

Publisher

Oxford University Press (OUP)

Reference52 articles.

1. Katyusha: The first direct acceleration of stochastic gradient methods;Allen-Zhu;J. Mach. Learn. Res.,2018

2. Robust accelerated gradient methods for smooth strongly convex functions;Aybat;SIAM J. Optim.,2020

3. A geometric alternative to Nesterov’s accelerated gradient descent;Bubeck,2015

4. Accelerated linear convergence of stochastic momentum methods in Wasserstein distances;Can,2019

5. The masked sample covariance estimator: an analysis using matrix concentration inequalities;Chen;Inform. Infer.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3