Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares

Author:

Marumo NaokiORCID,Okuno Takayuki,Takeda Akiko

Abstract

AbstractA new Levenberg–Marquardt (LM) method for solving nonlinear least squares problems with convex constraints is described. Various versions of the LM method have been proposed, their main differences being in the choice of a damping parameter. In this paper, we propose a new rule for updating the parameter so as to achieve both global and local convergence even under the presence of a convex constraint set. The key to our results is a new perspective of the LM method from majorization-minimization methods. Specifically, we show that if the damping parameter is set in a specific way, the objective function of the standard subproblem in LM methods becomes an upper bound on the original objective function under certain standard assumptions. Our method solves a sequence of the subproblems approximately using an (accelerated) projected gradient method. It finds an $$\varepsilon$$ ε -stationary point after $$O(\varepsilon ^{-2})$$ O ( ε - 2 ) computation and achieves local quadratic convergence for zero-residual problems under a local error bound condition. Numerical results on compressed sensing and matrix factorization show that our method converges faster in many cases than existing methods.

Funder

Japan Society for the Promotion of Science

Exploratory Research for Advanced Technology

University of Tokyo

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3