Application of a Variable Weight Time Function Combined Model in Surface Subsidence Prediction in Goaf Area: A Case Study in China

Author:

Chai Huabin1,Xu Hui1,Hu Jibiao12,Geng Sijia1,Guan Pengju1,Ding Yahui1,Zhao Yuqiao1,Xu Mingtao1,Chen Lulu1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. College of GeoScience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

To attain precise forecasts of surface displacements and deformations in goaf areas (a void or cavity that remains underground after the extraction of mineral resources) following coal extraction, this study based on the limitations of individual time function models, conducted a thorough analysis of how the parameters of the model impact subsidence curves. Parameter estimation was conducted using the trust-region reflective algorithm (TRF), and the time function models were identified. Then we utilized a combined model approach and introduced the sliding window mechanism to assign variable weights to the model. Based on this, the combined model was used for prediction, followed by the application of this composite prediction to engineering scenarios for the dynamic forecasting of surface movements and deformations. The results indicated that, in comparison with DE, GA, PSO algorithms, the TRF exhibited superior stability and convergence. The parameter models obtained using this method demonstrated a higher level of predictive accuracy. Moreover, the predictive precision of the variable-weight time function combined model surpassed that of corresponding individual time function models. When employing six different variable-weight combination prediction models for point C22, the Weibull-MMF model demonstrated the most favorable fitting performance, featuring a root mean square error (RMSE) of 32.98 mm, a mean absolute error (MAE) of 25.66 mm, a mean absolute percentage error (MAPE) of 7.67%; the correlation coefficient R2 reached 0.99937. These metrics consistently outperformed their respective individual time function models. Additionally, in the validation process of the combined model at point C16, the residuals were notably smaller than those of individual models. This reaffirmed the accuracy and reliability of the proposed variable-weight combined model. Given that the variable-weight combination model was an evolution from individual time function models, its applicability extends to a broader range, offering valuable guidance for the dynamic prediction of surface movement and deformation in mining areas.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3