Abstract
AbstractArtificial intelligence and machine learning have led to prominent and spectacular innovations in various scenarios. Application in medicine, however, can be challenging due to privacy concerns and strict legal regulations. Methods that centralize knowledge instead of data could address this issue. In this work, 6 different decentralized machine learning algorithms are applied to 12-lead ECG classification and compared to conventional, centralized machine learning. The results show that state-of-the-art federated learning leads to reasonable losses of classification performance compared to a standard, central model (−0.054 AUROC) while providing a significantly higher level of privacy. A proposed weighted variant of federated learning (−0.049 AUROC) and an ensemble (−0.035 AUROC) outperformed the standard federated learning algorithm. Overall, considering multiple metrics, the novel batch-wise sequential learning scheme performed best (−0.036 AUROC to baseline). Although, the technical aspects of implementing them in a real-world application are to be carefully considered, the described algorithms constitute a way forward towards preserving-preserving AI in medicine.
Funder
AIT Austrian Institute of Technology GmbH
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Science Applications,Health Informatics,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献