HRIDM: Hybrid Residual/Inception-Based Deeper Model for Arrhythmia Detection from Large Sets of 12-Lead ECG Recordings

Author:

Moqurrab Syed Atif1ORCID,Rai Hari Mohan1ORCID,Yoo Joon1ORCID

Affiliation:

1. School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea

Abstract

Heart diseases such as cardiovascular and myocardial infarction are the foremost reasons of death in the world. The timely, accurate, and effective prediction of heart diseases is crucial for saving lives. Electrocardiography (ECG) is a primary non-invasive method to identify cardiac abnormalities. However, manual interpretation of ECG recordings for heart disease diagnosis is a time-consuming and inaccurate process. For the accurate and efficient detection of heart diseases from the 12-lead ECG dataset, we have proposed a hybrid residual/inception-based deeper model (HRIDM). In this study, we have utilized ECG datasets from various sources, which are multi-institutional large ECG datasets. The proposed model is trained on 12-lead ECG data from over 10,000 patients. We have compared the proposed model with several state-of-the-art (SOTA) models, such as LeNet-5, AlexNet, VGG-16, ResNet-50, Inception, and LSTM, on the same training and test datasets. To show the effectiveness of the computational efficiency of the proposed model, we have only trained over 20 epochs without GPU support and we achieved an accuracy of 50.87% on the test dataset for 27 categories of heart abnormalities. We found that our proposed model outperformed the previous studies which participated in the official PhysioNet/CinC Challenge 2020 and achieved fourth place as compared with the 41 official ranking teams. The result of this study indicates that the proposed model is an implying new method for predicting heart diseases using 12-lead ECGs.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3