Author:
Sun Xingzhi,Orlowska Maria E.,Zhou Xiaofang
Publisher
Springer Berlin Heidelberg
Reference16 articles.
1. Wang, J.T.L., Chirn, G.W., Marr, T.G., Shapiro, B.A., Shasha, D., Zhang, K.: Combinatorial pattern discovery for scientific data: Some preliminary results. In: Proc. 1994 ACM SIGMOD Intl. Conf. on Management of Data. (1994) 115–125
2. Mannila, H., Toivonen, H.: Discovering generalized episodes using minimal occurrences. In: Knowledge Discovery and Data Mining. (1996) 146–151
3. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1 (1997) 259–289
4. Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In: Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD’98), New York, NY, AAAI Press, Menlo Park, CA (1998) 359–363
5. Yang, J., Wang, W., Yu, P.S.: Infominer: mining surprising periodic patterns. In: Proc. 7th ACM SIGKDD Conference. (2001) 395–400
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Discovering Periodicity in Locally Repeating Patterns;2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA);2022-10-13
2. Mining Clinical Events to Reveal Patterns and Sequences;Innovative Approaches and Solutions in Advanced Intelligent Systems;2016
3. Sequential pattern mining -- approaches and algorithms;ACM Computing Surveys;2013-02
4. Temporal Extension for a Conceptual Multidimensional Model;Encyclopedia of Data Warehousing and Mining, Second Edition;2009
5. Temporal Event Sequence Rule Mining;Encyclopedia of Data Warehousing and Mining, Second Edition;2009