Temporal Event Sequence Rule Mining

Author:

Harms Sherri K.1

Affiliation:

1. University of Nebraska at Kearney, USA

Abstract

The emergence of remote sensing, scientific simulation and other survey technologies has dramatically enhanced our capabilities to collect temporal data. However, the explosive growth in data makes the management, analysis, and use of data both difficult and expensive. Methods that characterize interesting or unusual patterns from the volumes of temporal data are needed (Roddick & Spiliopoulou, 2002; Han & Kamber, 2005). The association rule mining methods described in this chapter provide the ability to find periodic occurrences of inter-sequential factors of interest, from groups of long, non-transactional temporal event sequences. Association rule mining is well-known to work well for problems related to the recognition of frequent patterns of data (Han & Kamber, 2005). Rules are relatively easy for humans to interpret and have a long history of use in artificial intelligence for representing knowledge learned from data.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3