Super-stability in the student-project allocation problem with ties

Author:

Olaosebikan SofiatORCID,Manlove DavidORCID

Abstract

AbstractThe Student-Project Allocation problem with lecturer preferences over Students (spa-s) involves assigning students to projects based on student preferences over projects, lecturer preferences over students, and the maximum number of students that each project and lecturer can accommodate. This classical model assumes that each project is offered by one lecturer and that preference lists are strictly ordered. Here, we study a generalisation of spa-s where ties are allowed in the preference lists of students and lecturers, which we refer to as the Student-Project Allocation problem with lecturer preferences over Students with Ties (spa-st). We investigate stable matchings under the most robust definition of stability in this context, namely super-stability. We describe the first polynomial-time algorithm to find a super-stable matching or to report that no such matching exists, given an instance of spa-st. Our algorithm runs in O(L) time, where L is the total length of all the preference lists. Finally, we present results obtained from an empirical evaluation of the linear-time algorithm based on randomly-generated spa-st instances. Our main finding is that, whilst super-stable matchings can be elusive when ties are present in the students’ and lecturers’ preference lists, the probability of such a matching existing is significantly higher if ties are restricted to the lecturers’ preference lists.

Funder

Engineering and Physical Sciences Research Council

University of Glasgow

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Control and Optimization,Discrete Mathematics and Combinatorics,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3