Data-Driven Predictive Modeling of Lithofacies and Fe In-Situ Grade in the Assen Fe Ore Deposit of the Transvaal Supergroup (South Africa) and Implications on the Genesis of Banded Iron Formations

Author:

Nwaila Glen T.,Zhang Steven E.,Bourdeau Julie E.,Negwangwatini Elekanyani,Rose Derek H.,Burnett Mark,Ghorbani YousefORCID

Abstract

AbstractThe Assen Fe ore deposit is a banded iron formation (BIF)-hosted orebody, occurring in the Penge Formation of the Transvaal Supergroup, located 50 km northwest of Pretoria in South Africa. Most BIF-hosted Fe ore deposits have experienced post-depositional alteration including supergene enrichment of Fe and low-grade regional metamorphism. Unlike most of the known BIF-hosted Fe ore deposits, high-grade hematite (> 60% Fe) in the Assen Fe ore deposit is located along the lithological contacts with dolerite intrusions. Due to the variability in alteration levels, identifying the lithologies present within the various parts of the Assen Fe ore deposit, specifically within the weathering zone, is often challenging. To address this challenge, machine learning was applied to enable the automatic classification of rock types identified within the Assen Fe ore mine and to predict the in-situ Fe grade. This classification is based on geochemical analyses, as well as petrography and geological mapping. A total of 21 diamond core drill cores were sampled at 1 m intervals, covering all the lithofacies present at Assen mine. These were analyzed for major elements and oxides by means of X-ray fluorescence spectrometry. Numerous machine learning algorithms were trained, tested and cross-validated for automated lithofacies classification and prediction of in-situ Fe grade, namely (a) k-nearest neighbors, (b) elastic-net, (c) support vector machines (SVMs), (d) adaptive boosting, (e) random forest, (f) logistic regression, (g) Naïve Bayes, (h) artificial neural network (ANN) and (i) Gaussian process algorithms. Random forest, SVM and ANN classifiers yield high classification accuracy scores during model training, testing and cross-validation. For in-situ Fe grade prediction, the same algorithms also consistently yielded the best results. The predictability of in-situ Fe grade on a per-lithology basis, combined with the fact that CaO and SiO2were the strongest predictors of Fe concentration, support the hypothesis that the process that led to Fe enrichment in the Assen Fe ore deposit is dominated by supergene processes. Moreover, we show that predictive modeling can be used to demonstrate that in this case, the main differentiator between the predictability of Fe concentration between different lithofacies lies in the strength of multivariate elemental associations between Fe and other oxides. Localized high-grade Fe ore along with lithological contacts with dolerite intrusion is indicative of intra-basinal fluid circulation from an already Fe-enriched hematite. These findings have a wider implication on lithofacies classification in weathered rocks and mobility of economic valuable elements such as Fe.

Funder

Thuthuka Grant

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3