Machine Learning-Based Delineation of Geodomain Boundaries: A Proof-of-Concept Study Using Data from the Witwatersrand Goldfields

Author:

Zhang Steven E.ORCID,Nwaila Glen T.,Bourdeau Julie E.,Ghorbani Yousef,Carranza Emmanuel John M.

Abstract

AbstractMachine-aided geological interpretation provides an opportunity for rapid and data-driven decision-making. In disciplines such as geostatistics, the integration of machine learning has the potential to improve the reliability of mineral resources and ore reserve estimates. In this study, inspired by existing geostatistical approaches that use radial basis functions to delineate domain boundaries, we reformulate the problem into a machine learning task for automated domain boundary delineation to partition the orebody. We use an actual dataset from an operating mine (Driefontein gold mine, Witwatersrand Basin in South Africa) to showcase our new method. Using various machine learning algorithms, domain boundaries were created. We show that based on a combination of in-discipline requirements and heuristic reasoning, some algorithms/models may be more desirable than others, beyond merely cross-validation performance metrics. In particular, the support vector machine algorithm yielded simple (low boundary complexity) but geologically realistic and feasible domain boundaries. In addition to the empirical results, the support vector machine algorithm is also functionally the most resemblant of current approaches that makes use of radial basis functions. The delineated domains were subsequently used to demonstrate the effectiveness of domain delineation by comparing domain-based estimation versus non-domain-based estimation using an identical automated workflow. Analysis of estimation results indicate that domain-based estimation is more likely to result in better metal reconciliation as compared with non-domained based estimation. Through the adoption of the machine learning framework, we realized several benefits including: uncertainty quantification; domain boundary complexity tuning; automation; dynamic updates of models using new data; and simple integration with existing machine learning-based workflows.

Funder

Thuthuka Grant

University of the Witwatersrand

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3