A Self-Contained Karma Economy for the Dynamic Allocation of Common Resources

Author:

Elokda EzzatORCID,Bolognani SaverioORCID,Censi AndreaORCID,Dörfler FlorianORCID,Frazzoli Emilio

Abstract

AbstractThis paper presents karma mechanisms, a novel approach to the repeated allocation of a scarce resource among competing agents over an infinite time. Examples include deciding which ride hailing trip requests to serve during peak demand, granting the right of way in intersections or lane mergers, or admitting internet content to a regulated fast channel. We study a simplified yet insightful formulation of these problems where at every instant two agents from a large population get randomly matched to compete over the resource. The intuitive interpretation of a karma mechanism is “If I give in now, I will be rewarded in the future.” Agents compete in an auction-like setting where they bid units of karma, which circulates directly among them and is self-contained in the system. We demonstrate that this allows a society of self-interested agents to achieve high levels of efficiency without resorting to a (possibly problematic) monetary pricing of the resource. We model karma mechanisms as dynamic population games and guarantee the existence of a stationary Nash equilibrium. We then analyze the performance at the stationary Nash equilibrium numerically. For the case of homogeneous agents, we compare different mechanism design choices, showing that it is possible to achieve an efficient and ex-post fair allocation when the agents are future aware. Finally, we test the robustness against agent heterogeneity and propose remedies to some of the observed phenomena via karma redistribution.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Statistics and Probability,Economics and Econometrics

Reference60 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3