CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits

Author:

Elokda Ezzat12ORCID,Cenedese Carlo1ORCID,Zhang Kenan13ORCID,Censi Andrea2ORCID,Lygeros John1ORCID,Frazzoli Emilio2,Dörfler Florian1ORCID

Affiliation:

1. Automatic Control Laboratory, Department of Information Technology and Electric Engineering, ETH Zürich (Eidgenössische Technische Hochschule Zürich), 8092 Zürich, Switzerland;

2. Institute for Dynamic Systems and Control, Department of Mechanical and Process Engineering, ETH Zürich (Eidgenössische Technische Hochschule Zürich), 8092 Zürich, Switzerland;

3. Laboratory for Human-Oriented Mobility Eco-system School of Architecture, Civil and Environmental Engineering, EPFL (École Polytechnique fédérale de Lausanne), 1015 Lausanne, Switzerland

Abstract

This paper proposes a nonmonetary traffic demand management scheme, named CARMA, as a fair solution to the morning commute congestion. We consider heterogeneous commuters traveling through a single bottleneck that differ in both the desired arrival time and value of time (VOT). We consider a generalized notion of VOT by allowing it to vary dynamically on each day (e.g., according to trip purpose and urgency) rather than being a static characteristic of each individual. In our CARMA scheme, the bottleneck is divided into a fast lane that is kept in free flow and a slow lane that is subject to congestion. We introduce a nontradable mobility credit, named karma, that is used by commuters to bid for access to the fast lane. Commuters who get outbid or do not participate in the CARMA scheme instead use the slow lane. At the end of each day, karma collected from the bidders is redistributed, and the process repeats day by day. We model the collective commuter behaviors under CARMA as a dynamic population game (DPG), in which a stationary Nash equilibrium (SNE) is guaranteed to exist. Unlike existing monetary schemes, CARMA is demonstrated, both analytically and numerically, to achieve (a) an equitable traffic assignment with respect to heterogeneous income classes and (b) a strong Pareto improvement in the long-term average travel disutility with respect to no policy intervention. With extensive numerical analysis, we show that CARMA is able to retain the same congestion reduction as an optimal monetary tolling scheme under uniform karma redistribution and even outperform tolling under a well-designed redistribution scheme. We also highlight the privacy-preserving feature of CARMA, that is, its ability to tailor to the private preferences of commuters without centrally collecting the information. History: This paper has been accepted for the Transportation Science Special Issue on TSL Conference 2023. Funding: This work was supported by NCCR Automation, a National Centre of Competence in Research, funded by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung [Grant 180545]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2023.0323 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3