At the end of the world: Local Dynamical Cobordism

Author:

Angius Roberta,Calderón-Infante José,Delgado MatildaORCID,Huertas Jesús,Uranga Angel M.

Abstract

Abstract The Cobordism Conjecture states that any Quantum Gravity configuration admits, at topological level, a boundary ending spacetime. We study the dynamical realization of cobordism, as spacetime dependent solutions of Einstein gravity coupled to scalars containing such end-of-the-world ‘branes’. The latter appear in effective theory as a singularity at finite spacetime distance at which scalars go off to infinite field space distance. We provide a local description near the end-of-the-world branes, in which the solutions simplify dramatically and are characterized in terms of a critical exponent, which controls the asymptotic profiles of fields and the universal scaling relations among the spacetime distance to the singularity, the field space distance, and the spacetime curvature. The analysis does not rely on supersymmetry. We study many explicit examples of such Local Dynamical Cobordisms in string theory, including 10d massive IIA, the 10d non-supersymmetric USp(32) theory, Bubbles of Nothing, 4d 𝒩 = 1 cosmic string solutions, the Klebanov-Strassler throat, Dp-brane solutions, brane configurations related to the D1/D5 systems, and small black holes. Our framework encompasses diverse recent setups in which scalars diverge at the core of defects, by regarding them as suitable end-of-the-world branes. We explore the interplay of Local Dynamical Cobordisms with the Distance Conjecture and other swampland constraints.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The boundary proposal;Physics Letters B;2024-09

2. A symmetry-centric perspective on the geometry of the string landscape and the swampland;International Journal of Modern Physics D;2024-07-19

3. A positive metric over DGKT vacua;Journal of High Energy Physics;2024-06-05

4. The bubble of nothing under T-duality;Journal of High Energy Physics;2024-05-30

5. Kaluza–Klein tower and bubble nucleation in six dimensional Einstein–Maxwell theory;The European Physical Journal C;2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3