Flight speed and time of day heavily influence rainforest canopy wildlife counts from drone-mounted thermal camera surveys

Author:

Whitworth AndrewORCID,Pinto Carolina,Ortiz Johan,Flatt Eleanor,Silman Miles

Abstract

AbstractThe payload size and commercial availability of thermal infrared cameras mounted on drones has initiated a new wave in the potential for conservationists and researchers to survey, count and detect wildlife, even the most complex of habitats such as forest canopies. However, several fundamental design and methodological questions remain to be tested before standardized monitoring approaches can be broadly adopted. We test the impact of both the speed of drone flights and diel flight period on tropical rainforest canopy wildlife detections. Detection and identification rates differ between both flight speeds and diel time. Overall ~ 36% more detections were made during slower flight speeds, along with a greater ability to categorize taxonomic groups. Flights conducted at 3am resulted in ~ 67% more detections compared to flights conducted at 7am (the diel period with the lowest detection rate). However, 112% more detections could be identified to taxonomic group in 7am flights compared with 3am flights – due to the types of wildlife being identified and the assistance of the RGB camera. Although, this technology holds great promise for carrying out surveys in structurally complex and poorly known ecosystems like forest canopies, there is more to do in further methodological testing, and building automated post-processing systems. Our results suggest that drone studies in the same habitat types, with the same animal densities, could be off by multiples if flown during different times and/or at different speeds. The difference could be an alarming 5-6x variation in animal detections or identification depending on changes in these two factors alone.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3