Using water‐landing, fixed‐wing UAVs and computer vision to assess seabird nutrient subsidy effects on sharks and rays

Author:

Schiele Melissa12ORCID,Rowcliffe J. Marcus1,Clark Ben2,Lepper Paul2,Letessier Tom B.1

Affiliation:

1. Institute of Zoology, Zoological Society of London London UK

2. Wolfson School of Engineering, Loughborough University Loughborough UK

Abstract

AbstractBird colonies on islands sustain elevated productivity and biomass on adjacent reefs, through nutrient subsidies. However, the implications of this localized enhancement on higher and often more mobile trophic levels (such as sharks and rays) are unclear, as spatial trends in mobile fauna are often poorly captured by traditional underwater visual surveys. Here, we explore whether the presence of seabird colonies is associated with enhanced abundances of sharks and rays on adjacent coral reefs. We used a novel long‐range water‐landing fixed‐wing unoccupied aerial vehicle (UAV) to survey the distribution and density of sharks, rays and any additional megafauna, on and around tropical coral islands (n = 14) in the Chagos Archipelago Marine Protected Area. We developed a computer‐vision algorithm to distinguish greenery (trees and shrubs), sand and sea glitter from visible ocean to yield accurate marine megafauna density estimation. We detected elevated seabird densities over rat‐free islands, with the commonest species, sooty tern, reaching densities of 932 ± 199 per km−2 while none were observed over former coconut plantation islands. Elasmobranch density around rat‐free islands with seabird colonies was 6.7 times higher than around islands without seabird colonies (1.3 ± 0.63 vs. 0.2 ± SE 0.1 per km2). Our results are evidence that shark and ray distribution is sensitive to natural and localized nutrient subsidies. Correcting for non‐sampled regions of images increased estimated elasmobranch density by 14%, and our openly accessible computer vision algorithm makes this correction easy to implement to generate shark and ray and other wildlife densities from any aerial imagery. The water‐landing fixed‐wing long‐range UAV technology used in this study may provide cost effective monitoring opportunities in remote ocean locations.

Funder

Marine Management Organisation

Fondation Bertarelli

Publisher

Wiley

Subject

Nature and Landscape Conservation,Computers in Earth Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3