The value of local community knowledge in species distribution modelling for a threatened Neotropical parrot

Author:

Biddle RebeccaORCID,Solis-Ponce Ivette,Jones Martin,Marsden Stuart,Pilgrim Mark,Devenish Christian

Abstract

AbstractSpecies distribution models are widely used in conservation planning, but obtaining the necessary occurrence data can be challenging, particularly for rare species. In these cases, citizen science may provide insight into species distributions. To understand the distribution of the newly described and Critically Endangered Amazona lilacina, we collated species observations and reliable eBird records from 2010–2020. We combined these with environmental predictors and either randomly generated background points or absence points generated from eBird checklists, to build distribution models using MaxEnt. We also conducted interviews with people local to the species’ range to gather community-sourced occurrence data. We grouped these data according to perceived expertise of the observer, based on the ability to identify A. lilacina and its distinguishing features, knowledge of its ecology, overall awareness of parrot biodiversity, and the observation type. We evaluated all models using AUC and Tjur R2. Field data models built using background points performed better than those using eBird absence points (AUC = 0.80 ± 0.02, Tjur R2 = 0.46 ± 0.01 compared to AUC = 0.78 ± 0.03, Tjur R2 = 0.43 ± 0.21). The best performing community data model used presence records from people who were able recognise a photograph of A. lilacina and correctly describe its distinguishing physical or behavioural characteristics (AUC = 0.84 ± 0.05, Tjur R2 = 0.51± 0.01). There was up to 92% overlap between the field data and community data models, which when combined, predicted 17,772 km2 of suitable habitat. Use of community knowledge offers a cost-efficient method to obtain data for species distribution modelling; we offer recommendations on how to assess its performance and present a final map of potential distribution for A. lilacina.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3