Abstract
AbstractSpecies distribution models are widely used in conservation planning, but obtaining the necessary occurrence data can be challenging, particularly for rare species. In these cases, citizen science may provide insight into species distributions. To understand the distribution of the newly described and Critically Endangered Amazona lilacina, we collated species observations and reliable eBird records from 2010–2020. We combined these with environmental predictors and either randomly generated background points or absence points generated from eBird checklists, to build distribution models using MaxEnt. We also conducted interviews with people local to the species’ range to gather community-sourced occurrence data. We grouped these data according to perceived expertise of the observer, based on the ability to identify A. lilacina and its distinguishing features, knowledge of its ecology, overall awareness of parrot biodiversity, and the observation type. We evaluated all models using AUC and Tjur R2. Field data models built using background points performed better than those using eBird absence points (AUC = 0.80 ± 0.02, Tjur R2 = 0.46 ± 0.01 compared to AUC = 0.78 ± 0.03, Tjur R2 = 0.43 ± 0.21). The best performing community data model used presence records from people who were able recognise a photograph of A. lilacina and correctly describe its distinguishing physical or behavioural characteristics (AUC = 0.84 ± 0.05, Tjur R2 = 0.51± 0.01). There was up to 92% overlap between the field data and community data models, which when combined, predicted 17,772 km2 of suitable habitat. Use of community knowledge offers a cost-efficient method to obtain data for species distribution modelling; we offer recommendations on how to assess its performance and present a final map of potential distribution for A. lilacina.
Publisher
Springer Science and Business Media LLC
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献