Interpreting the Effect of Stimulus Parameters on the Electrically Evoked Compound Action Potential and on Neural Health Estimates

Author:

Brochier TimORCID,McKay Colette M.,Carlyon Robert P.

Abstract

AbstractVariations in the condition of the neural population along the length of the cochlea can degrade the spectral and temporal representation of sounds conveyed by CIs, thereby limiting speech perception. One measurement that has been proposed as an estimate of neural survival (the number of remaining functional neurons) or neural health (the health of those remaining neurons) is the effect of stimulation parameters, such as the interphase gap (IPG), on the amplitude growth function (AGF) of the electrically evoked compound action potential (ECAP). The extent to which such measures reflect neural factors, rather than non-neural factors (e.g. electrode orientation, electrode-modiolus distance, and impedance), depends crucially upon how the AGF data are analysed. However, there is currently no consensus in the literature for the correct method to interpret changes in the ECAP AGF due to changes in stimulation parameters. We present a simple theoretical model for the effect of IPG on ECAP AGFs, along with a re-analysis of both animal and human data that measured the IPG effect. Both the theoretical model and the re-analysis of the animal data suggest that the IPG effect on ECAP AGF slope (IPG slope effect), measured using either a linear or logarithmic input-output scale, does not successfully control for the effects of non-neural factors. Both the model and the data suggest that the appropriate method to estimate neural health is by measuring the IPG offset effect, defined as the dB offset between the linear portions of ECAP AGFs for two stimuli differing only in IPG.

Funder

UK Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Sensory Systems,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3