Abstract
AbstractLet $$f:X\rightarrow \mathbb {R}$$
f
:
X
→
R
be a function defined on a connected nonsingular real algebraic set X in $$\mathbb {R}^n$$
R
n
with $$\textrm{dim}X\ge 2.$$
dim
X
≥
2
.
We prove that f is a regular function whenever the restriction $$f|_C$$
f
|
C
is a regular function for every algebraic curve C in X that is an analytic submanifold homeomorphic to the unit circle and has at most one singular point. We also have a suitable version of this result for X not necessarily connected.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Bilski, M., Bochnak, J., Kucharz, W.: Hartogs-type theorems in real algebraic geometry, I. J. Reine Angew. Math. 790, 197–221 (2022)
2. Bilski, M.: Approximation of maps into spheres by piecewise-regular maps of class $$C^k$$. Math. Ann. 378, 763–776 (2020)
3. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. In: Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge 3, vol. 36. Springer, Berlin (1998)
4. Bochnak, J., Kollár, J., Kucharz, W.: Checking real analyticity on surfaces. J. Math. Pures Appl. 133, 167–171 (2020)
5. Bochnak, J., Siciak, J.: A characterization of analytic functions of several real variables. Ann. Polon. Math. 123, 9–13 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Algebraic versions of Hartogs’ theorem;Communications in Contemporary Mathematics;2024-01-29