Abstract
Abstract
The aim of this paper is to prove that every continuous map from a compact subset of a real algebraic variety into a sphere can be approximated by piecewise-regular maps of class $${\mathcal {C}}^k,$$
C
k
,
where k is an arbitrary nonnegative integer.
Funder
Jagiellonian University in Krakow
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergeb. Math. Grenzgeb. vol. 36. Springer, Berlin (1998)
2. Bochnak, J., Kucharz, W.: Algebraic approximation of mappings into spheres. Mich. Math. J. 34, 119–125 (1987)
3. Bochnak, J., Kucharz, W.: Realization of homotopy classes by algebraic mappings. J. Reine Angew. Math. 377, 159–169 (1987)
4. Bochnak, J., Kucharz, W.: On real algebraic morphisms into even-dimensional spheres. Ann. Math. 128(2), 415–433 (1988)
5. Fichou, G., Huisman, J., Mangolte, F., Monnier, J.-P.: Fonctions régulues. J. Reine Angew. Math. 718, 103–151 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hartogs-type theorems in real algebraic geometry, II;Mathematische Annalen;2023-10-24
2. Hartogs-type theorems in real algebraic geometry, I;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-07-29
3. Approximation by piecewise-regular maps;Advances in Mathematics;2020-12