Abstract
AbstractIn this paper we introduce a refined multiplicity for rational tropical curves in arbitrary dimension, which generalizes the refined multiplicity introduced by Block and Göttsche (Compositio Mathematica 152(1): 115–151, 2016). We then prove an invariance statement for the count of rational tropical curves in several enumerative problems using this new refined multiplicity. This leads to the definition of Block–Göttsche polynomials in any dimension.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Allermann, L., Rau, J.: First steps in tropical intersection theory. Mathematische Zeitschrift 264(3), 633–670 (2010)
2. Blechman, L., Shustin, E.: Refined descendant invariants of toric surfaces. Discrete Comput. Geom. 62(1), 180–208 (2019)
3. Block, F., Göttsche, L.: Refined curve counting with tropical geometry. Compos. Math. 152(1), 115–151 (2016)
4. Blomme, T.: A Caporaso-Harris type formula for relative refined invariants (2019). arXiv preprint arXiv:1912.06453
5. Blomme, T.: Computation of refined enumerative invariants in real and tropical geometry. PhD Thesis (2020)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献