Tropical Quantum Field Theory, Mirror Polyvector Fields, and Multiplicities of Tropical Curves

Author:

Mandel Travis1,Ruddat Helge23

Affiliation:

1. Department of Mathematics, University of Oklahoma, 601 Elm Ave Room 423, Norman, OK 73019, USA

2. JGU Mainz, Staudingerweg 9, 55128 Mainz

3. University of Hamburg, Bundesstr. 55, 20148 Hamburg

Abstract

Abstract We introduce algebraic structures on the polyvector fields of an algebraic torus that serve to compute multiplicities in tropical and log Gromov–Witten theory while also connecting to the mirror symmetry dual deformation theory of complex structures. Most notably these structures include a tropical quantum field theory and an $L_{\infty }$-structure. The latter is an instance of Getzler’s gravity algebra, and the $l_2$-bracket is a restriction of the Schouten–Nijenhuis bracket. We explain the relationship to string topology in the Appendix (thanks to Janko Latschev).

Funder

National Science Foundation

European Research Council

DFG

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference56 articles.

1. Symplectic cohomology and Viterbo’s theorem;Abouzaid,2015

2. Two-dimensional topological quantum field theories and Frobenius algebras;Abrams;J. Knot Theory Ramif.,1996

3. First steps in tropical intersection theory;Allermann;Math. Z.,2010

4. Frobenius manifolds and formality of Lie algebras of polyvector fields;Barannikov;Internat. Math. Res. Notices,1998

5. Refined descendant invariants of toric surfaces;Blechman;Discrete Comput. Geom.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tropical Mirror;Symmetry, Integrability and Geometry: Methods and Applications;2024-08-04

2. Stable maps to Looijenga pairs;Geometry & Topology;2024-02-27

3. On the log–local principle for the toric boundary;Bulletin of the London Mathematical Society;2022-02

4. The degeneration formula for stable log maps;manuscripta mathematica;2021-12-28

5. Counting tropical rational space curves with cross-ratio constraints;manuscripta mathematica;2021-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3