Abstract
AbstractWe study infinite approximate subgroups of soluble Lie groups. We show that approximate subgroups are close, in a sense to be defined, to genuine connected subgroups. Building upon this result we prove a structure theorem for approximate lattices in soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals due to Yves Meyer.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Auslander, L.: On a Problem of Philip Hall. Ann. Math. 86(1), 112–116 (1967). http://www.jstor.org/stable/1970362
2. Björklund, M., Hartnick, T.: Approximate lattices. Duke Math. J. 167(15), 2903–2964 (2018). https://doi.org/10.1215/00127094-2018-0028. https://doiorg.ezp.lib.cam.ac.uk/10.1215/00127094-2018-0028
3. Björklund, M., Hartnick, T., Stulemeijer, T.: Borel density for approximate lattices. Forum Math. Sigma 7(e40), 27 (2019). https://doi.org/10.1017/fms.2019.39
4. Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci. 116, 115–221 (2012). https://doi.org/10.1007/s10240-012-0043-9. https://doiorg.ezp.lib.cam.ac.uk/10.1007/s10240-012-0043-9
5. Carolino, P.K.: The Structure of Locally Compact Approximate Groups. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.) University of California, Los Angeles (2015). http://gateway.proquest.com.ezp.lib.cam.ac.uk/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3725297
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献