Plemelj–Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operators

Author:

Schippers Eric,Staubach Wolfgang

Abstract

Abstract Let R be a compact Riemann surface and $$\Gamma $$ Γ be a Jordan curve separating R into connected components $$\Sigma _1$$ Σ 1 and $$\Sigma _2$$ Σ 2 . We consider Calderón–Zygmund type operators $$T(\Sigma _1,\Sigma _k)$$ T ( Σ 1 , Σ k ) taking the space of $$L^2$$ L 2 anti-holomorphic one-forms on $$\Sigma _1$$ Σ 1 to the space of $$L^2$$ L 2 holomorphic one-forms on $$\Sigma _k$$ Σ k for $$k=1,2$$ k = 1 , 2 , which we call the Schiffer operators. We extend results of Max Schiffer and others, which were confined to analytic Jordan curves $$\Gamma $$ Γ , to general quasicircles, and prove new identities for adjoints of the Schiffer operators. Furthermore, let V be the space of anti-holomorphic one-forms which are orthogonal to $$L^2$$ L 2 anti-holomorphic one-forms on R with respect to the inner product on $$\Sigma _1$$ Σ 1 . We show that the restriction of the Schiffer operator $$T(\Sigma _1,\Sigma _2)$$ T ( Σ 1 , Σ 2 ) to V is an isomorphism onto the set of exact holomorphic one-forms on $$\Sigma _2$$ Σ 2 . Using the relation between this Schiffer operator and a Cauchy-type integral involving Green’s function, we also derive a jump decomposition (on arbitrary Riemann surfaces) for quasicircles and initial data which are boundary values of Dirichlet-bounded harmonic functions and satisfy the classical algebraic constraints. In particular we show that the jump operator is an isomorphism on the subspace determined by these constraints.

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference23 articles.

1. Ahlfors, L.V., Sario, L.: Riemann surfaces. Princeton Mathematical Series, No. 26. Princeton University Press, Princeton (1960)

2. Askaripour, N., Barron, T.: On extension of holomorphic k-differentials on open Riemann surfaces. Houston J. Math. 40(4), 117–1126 (2014)

3. Bergman, S., Schiffer, M.: Kernel functions and conformal mapping. Compositio Math. 8, 205–249 (1951)

4. Courant, R.: Dirichlet’s principle, conformal mapping, and minimal surfaces. With an appendix by M. Schiffer. Reprint of the 1950 original. Springer-Verlag, New York-Heidelberg, 1977. Kernel functions and conformal mapping. Compositio Math. 8, 205–249 (1951)

5. Kats, B.A.: The Riemann boundary value problem on non-rectifiable curves and related questions. Complex Var. Elliptic Equ. 59(8), 1053–1069 (2014)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3