Schiffer Comparison Operators and Approximations on Riemann Surfaces Bordered by Quasicircles

Author:

Schippers Eric,Shirazi Mohammad,Staubach WolfgangORCID

Abstract

AbstractWe consider a compact Riemann surface R of arbitrary genus, with a finite number of non-overlapping quasicircles, which separate R into two subsets: a connected Riemann surface $$\Sigma $$ Σ , and the union $$\mathcal {O}$$ O of a finite collection of simply connected regions. We prove that the Schiffer integral operator mapping the Bergman space of anti-holomorphic one-forms on $$\mathcal {O}$$ O to the Bergman space of holomorphic forms on $$\Sigma $$ Σ is an isomorphism onto the exact one-forms, when restricted to the orthogonal complement of the set of forms on all of R. We then apply this to prove versions of the Plemelj–Sokhotski isomorphism and jump decomposition for such a configuration. Finally we obtain some approximation theorems for the Bergman space of one-forms and Dirichlet space of holomorphic functions on $$\Sigma $$ Σ by elements of Bergman space and Dirichlet space on fixed regions in R containing $$\Sigma $$ Σ .

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference23 articles.

1. Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton Mathematical Series, vol. 26. Princeton University Press, Princeton, NJ (1960)

2. Askaripour, N., Barron, T.: On extension of holomorphic k-differentials on open Riemann surfaces. Houston J. Math. 40(4), 117–1126 (2014)

3. Bergman, S., Schiffer, M.: Kernel functions and conformal mapping. Compositio Math. 8, 205–249 (1951)

4. Courant, R.: Dirichlet’s principle, conformal mapping, and minimal surfaces. With an appendix by M. Schiffer. Reprint of the original, p. 1977. Springer, New York, Heidelberg (1950)

5. Fornæss, J.E., Forstnerič, F., Fornæss Wold, E.: Holomorphic approximation: the legacy of Weierstrass, Runge, Oka-Weil, and Mergelyan. arXiv:1802.03924v3

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Faber Series for $$L^2$$ Holomorphic One-Forms on Riemann Surfaces with Boundary;Computational Methods and Function Theory;2024-03-22

2. Faber and Grunsky operators corresponding to bordered Riemann surfaces;Conformal Geometry and Dynamics of the American Mathematical Society;2020-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3