Abstract
AbstractA sharp pointwise differential inequality for vectorial second-order partial differential operators, with Uhlenbeck structure, is offered. As a consequence, optimal second-order regularity properties of solutions to nonlinear elliptic systems in domains in $${\mathbb R^n}$$
R
n
are derived. Both local and global estimates are established. Minimal assumptions on the boundary of the domain are required for the latter. In the special case of the p-Laplace system, our conclusions broaden the range of the admissible values of the exponent p previously known.
Funder
Deutsche Forschungsgemeinschaft
Ministero dell’Istruzione, dell’Universitá e della Ricerca
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
RUDN University
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case $1< p< 2$. J. Math. Anal. Appl. 140(1), 115–135 (1989)
2. Alberico, A., Chlebicka, I., Cianchi, A., Zatorska-Goldstein, A.: Fully anisotropic elliptic problems with minimally integrable data. Calc. Var. Partial Differ. Equ. 58(6), Paper No. 186, 50 pp (2019)
3. Avelin, B., Kuusi, T., Mingione, G.: Nonlinear Calderón–Zygmund theory in the limiting case. Arch. Ration. Mech. Anal. 227(2), 663–714 (2018)
4. Balci, A. K., Diening, L., Giova, R., Passarelli di Napoli, A.: Elliptic equations with degenerate weights. (2020). arXiv:2003.10380
5. Balci, A.K., Diening, L., Weimar, M.: Higher order Calderón–Zygmund estimates for the p-Laplace equation. J. Differ. Equ. 268(2), 590–635 (2020)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献