Abstract
AbstractWe consider local solutions u of nonlinear elliptic systems of the type $$\begin{aligned} \text {div} \,A(x, Du) = \text {div} \, F \qquad \text {in} \quad \Omega \subset \mathbb {R}^n, \end{aligned}$$
div
A
(
x
,
D
u
)
=
div
F
in
Ω
⊂
R
n
,
where $$u: \Omega \rightarrow \mathbb {R}^N$$
u
:
Ω
→
R
N
is in a weighted $$W^{1, p}_{loc}$$
W
loc
1
,
p
space, with $$p \ge 2$$
p
≥
2
, F is in a weighted $$W^{1, 2}_{loc}$$
W
loc
1
,
2
space and x$$\rightarrow $$
→
$$A(x, \xi )$$
A
(
x
,
ξ
)
has growth coefficients in the space of functions with bounded mean oscillation. We prove higher differentiability of u in the sense that the nonlinear expression of its gradient $$V_\mu (Du):=(\mu ^2 + |Du|^2)^{\frac{p - 2}{4}}Du$$
V
μ
(
D
u
)
:
=
(
μ
2
+
|
D
u
|
2
)
p
-
2
4
D
u
, with $$0 < \mu \le 1$$
0
<
μ
≤
1
, is weakly differentiable with $$D(V_\mu (Du))$$
D
(
V
μ
(
D
u
)
)
in a weighted $$L^2_{loc}$$
L
loc
2
space. Moreover we derive some local Calderón–Zygmund estimates when the source term is not necessarily differentiable. Global estimates for a suitable Dirichlet problem are also available.
Funder
MUR
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Acerbi, E., Fusco, N.: Regularity of minimizers of non-quadratic functionals: the case $$1 < p < 2$$. J. Math. Anal. Appl. 140, 115–135 (1989)
2. Acerbi, E., Mingione, G.: Gradient estimates for the $$p(x)$$-Laplacean system. J. R. Angew. Math. 584, 117–148 (2005)
3. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
4. Alvino, A.: Sulla disuguaglianza di Sobolev in Spazi di Lorentz. Boll. Un. Mat. It. A 5(14), 148–156 (1977)
5. Astala, K.: A remark on quasiconformal mappings and $$BMO$$-functions. Mich. Math. J. 30(2), 209–212 (1983)