Relaxed and logarithmic modules of $$\widehat{{{\mathfrak {s}}}{{\mathfrak {l}}}_3}$$

Author:

Adamović DraženORCID,Creutzig ThomasORCID,Genra NaokiORCID

Abstract

AbstractIn Adamović (Commun Math Phys 366:1025–1067, 2019), the affine vertex algebra $$L_k({{\mathfrak {s}}}{{\mathfrak {l}}}_2)$$ L k ( s l 2 ) is realized as a subalgebra of the vertex algebra $$Vir_c \otimes \Pi (0)$$ V i r c Π ( 0 ) , where $$Vir_c $$ V i r c is a simple Virasoro vertex algebra and $$\Pi (0)$$ Π ( 0 ) is a half-lattice vertex algebra. Moreover, all $$L_k({{\mathfrak {s}}}{{\mathfrak {l}}}_2)$$ L k ( s l 2 ) -modules (including, modules in the category $$KL_k$$ K L k , relaxed highest weight modules and logarithmic modules) are realized as $$Vir_c \otimes \Pi (0)$$ V i r c Π ( 0 ) -modules. A natural question is the generalization of this construction in higher rank. In the current paper, we study the case $${\mathfrak {g}}= {{\mathfrak {s}}}{{\mathfrak {l}}}_3$$ g = s l 3 and present realization of the VOA $$L_k({\mathfrak {g}})$$ L k ( g ) for $$k \notin {\mathbb {Z}}_{\ge 0}$$ k Z 0 as a vertex subalgebra of $${\mathcal {W}}_ k \otimes {\mathcal {S}} \otimes \Pi (0)$$ W k S Π ( 0 ) , where $${\mathcal {W}}_ k $$ W k is a simple Bershadsky–Polyakov vertex algebra and $${\mathcal {S}}$$ S is the $$\beta \gamma $$ β γ vertex algebra. We use this realization to study ordinary modules, relaxed highest weight modules and logarithmic modules. We prove the irreducibility of all our relaxed highest weight modules having finite-dimensional weight spaces (whose top components are Gelfand–Tsetlin modules). The irreducibility of relaxed highest weight modules with infinite-dimensional weight spaces is proved up to a conjecture on the irreducibility of certain $${\mathfrak {g}}$$ g -modules which are not Gelfand–Tsetlin modules. The next problem that we consider is the realization of logarithmic modules. We first analyse the free-field realization of $${\mathcal {W}}_ k $$ W k from Adamović et al. (Lett Math Phys 111(2), Paper No. 38, arXiv:2007.00396 [math.QA], 2021) and obtain a realization of logarithmic modules for $${\mathcal {W}}_ k $$ W k of nilpotent rank two at most admissible levels. Beyond admissible levels, we get realization of logarithmic modules up to a existence of certain $${\mathcal {W}}_k({{\mathfrak {s}}}{{\mathfrak {l}}}_3, f_{pr})$$ W k ( s l 3 , f pr ) -modules. Using logarithmic modules for the $$\beta \gamma $$ β γ VOA, we are able to construct logarithmic $$L_k({\mathfrak {g}})$$ L k ( g ) -modules of rank three.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse Reduction for Hook-Type W-Algebras;Communications in Mathematical Physics;2024-08-23

2. Rigid Tensor Structure on Big Module Categories for Some W-(super)algebras in Type A;Communications in Mathematical Physics;2023-09-23

3. New Approaches for Studying Conformal Embeddings and Collapsing Levels for W–Algebras;International Mathematics Research Notices;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3