Abstract
AbstractOriginating in the work of A.M. Semikhatov and D. Adamović, inverse reductions are embeddings involving W-algebras corresponding to the same Lie algebra but different nilpotent orbits. Here, we show that an inverse reduction embedding between the affine $$\mathfrak {sl}_{n+1}$$
sl
n
+
1
vertex operator algebra and the minimal $$\mathfrak {sl}_{n+1}$$
sl
n
+
1
W-algebra exists. This generalises the realisations for $$n=1,2$$
n
=
1
,
2
in Adamović (Commun Math Phys 366:1025–1067, 2019), Adamović (Math Ann 1–44, 2023). A similar argument is then used to show that inverse reduction embeddings exists between all hook-type $$\mathfrak {sl}_{n+1}$$
sl
n
+
1
W-algebras, which includes the principal/regular, subregular, minimal $$\mathfrak {sl}_{n+1}$$
sl
n
+
1
W-algebras, and the affine $$\mathfrak {sl}_{n+1}$$
sl
n
+
1
vertex operator algebra. This generalises the regular-to-subregular inverse reduction of Fehily (Commun Contemp Math 2250049, 2022), and similarly uses free-field realisations and their associated screening operators.
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Kac, V., Roan, S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003). arXiv:math-ph/0302015
2. Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004). arXiv:math-ph/0304011
3. Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras: An Introduction. Routledge, Boca Raton (2017)
4. Madsen, J., Ragoucy, E.: Secondary quantum Hamiltonian reductions. Commun. Math. Phys. 185(3), 509–541 (1997). arXiv:hep-th/9503042
5. Morgan, S: Quantum hamiltonian reduction of W-algebras and category $$\cal{O}$$. PhD thesis, University of Toronto (2014). arXiv:1502.07025 [math.RT]