Microphysiological systems for realizing microenvironment that mimics human physiology—functional material and its standardization applied to microfluidics

Author:

Ito Y.,Kawauchi I.,Yanagita Y.,Sakai Y.,Nishikawa M.,Arakawa H.,Kadoguchi M.,Tamai I.,Esashika K.,Takahashi J.,Ando O.,Satoh T.,Imai I.,Adachi S.,Chiba D.,Arai K.,Shiota K.,Sawaguchi T.,Yoshioka T.,Fujimoto T.,Yoshikuni T.,Mizuno A.,Aihara T.,Sakura T.,Kimura H.,Nakae H.ORCID

Abstract

AbstractMicrophysiological systems (MPS), also known as Organ(s)-on-Chip (OoC), are in vitro cell culture platforms that reproduce the function of cells/tissues/organs in a microenvironment. To closely mimic in vivo physiological functions, MPS must allow the cells to attain three-dimensional arrangements and be supplied with adequate oxygen and growth factors (via microfluidic channels). Furthermore, as MPS are mostly used in cell-based drug development assays, they must ensure easy analysis and high usability. To make MPS which conform to these various requirements, it is crucial to select appropriate materials; oftentimes, MPS-appropriate materials have been developed. Here, we review the functions and properties of materials used to make MPSs and summarize the specifications, considerations, and selection methods employed in choosing appropriate materials and technologies to fabricate MPS that meet standard requirements. Where possible, we give specific examples to explain several important functions. The functions of the chosen material for MPS depend on the context of use (COU) in the drug development process. Because of the diverse COUs, the material selection strategies and the processes used to fabricate required material functionalities are complex. We also discuss the importance of standardizing MPS material and recent international efforts made in this direction.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3