Stability of a one-dimensional morphoelastic model for post-burn contraction

Author:

Egberts GingerORCID,Vermolen FredORCID,van Zuijlen PaulORCID

Abstract

AbstractTo deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $${{\mathcal {O}}}(h^2)$$ O ( h 2 ) . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.

Funder

Nederlandse Brandwonden Stichting

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modelling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An existence result for accretive growth in elastic solids;Mathematical Models and Methods in Applied Sciences;2024-08-31

2. Models for Implant-Induced Capsular Contracture Post Breast Cancer Surgery;Bulletin of Mathematical Biology;2023-12-13

3. Stability of a two-dimensional biomorphoelastic model for post-burn contraction;Journal of Mathematical Biology;2023-03-24

4. High-speed predictions of post-burn contraction using a neural network trained on 2D-finite element simulations;Frontiers in Applied Mathematics and Statistics;2023-01-30

5. Sensitivity of a two-dimensional biomorphoelastic model for post-burn contraction;Biomechanics and Modeling in Mechanobiology;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3