Are RNA networks scale-free?

Author:

Clote P.ORCID

Abstract

AbstractA network is scale-free if its connectivity density function is proportional to a power-law distribution. It has been suggested that scale-free networks may provide an explanation for the robustness observed in certain physical and biological phenomena, since the presence of a few highly connected hub nodes and a large number of small-degree nodes may provide alternate paths between any two nodes on average—such robustness has been suggested in studies of metabolic networks, gene interaction networks and protein folding. A theoretical justification for why many networks appear to be scale-free has been provided by Barabási and Albert, who argue that expanding networks, in which new nodes are preferentially attached to highly connected nodes, tend to be scale-free. In this paper, we provide the first efficient algorithm to compute the connectivity density function for the ensemble of all homopolymer secondary structures of a user-specified length—a highly nontrivial result, since the exponential size of such networks precludes their enumeration. Since existent power-law fitting software, such as , cannot be used to determine a power-law fit for our exponentially large RNA connectivity data, we also implement efficient code to compute the maximum likelihood estimate for the power-law scaling factor and associated Kolmogorov–Smirnov p value. Hypothesis tests strongly indicate that homopolymer RNA secondary structure networks are not scale-free; moreover, this appears to be the case for real (non-homopolymer) RNA networks.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3