SGCP: a spectral self-learning method for clustering genes in co-expression networks

Author:

Aghaieabiane Niloofar,Koutis Ioannis

Abstract

Abstract Background A widely used approach for extracting information from gene expression data employs the construction of a gene co-expression network and the subsequent computational detection of gene clusters, called modules. WGCNA and related methods are the de facto standard for module detection. The purpose of this work is to investigate the applicability of more sophisticated algorithms toward the design of an alternative method with enhanced potential for extracting biologically meaningful modules. Results We present self-learning gene clustering pipeline (SGCP), a spectral method for detecting modules in gene co-expression networks. SGCP incorporates multiple features that differentiate it from previous work, including a novel step that leverages gene ontology (GO) information in a self-leaning step. Compared with widely used existing frameworks on 12 real gene expression datasets, we show that SGCP yields modules with higher GO enrichment. Moreover, SGCP assigns highest statistical importance to GO terms that are mostly different from those reported by the baselines. Conclusion Existing frameworks for discovering clusters of genes in gene co-expression networks are based on relatively simple algorithmic components. SGCP relies on newer algorithmic techniques that enable the computation of highly enriched modules with distinctive characteristics, thus contributing a novel alternative tool for gene co-expression analysis.

Funder

Division of Computing and Communication Foundations

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3