Abstract
AbstractBy generating transient encounters between individuals beyond their immediate social environment, transport can have a profound impact on the spreading of an epidemic. In this work, we consider epidemic dynamics in the presence of the transport process that gives rise to a multiplex network model. In addition to a static layer, the (multiplex) epidemic network consists of a second dynamic layer in which any two individuals are connected for the time they occupy the same site during a random walk they perform on a separate transport network. We develop a mean-field description of the stochastic network model and study the influence the transport process has on the epidemic threshold. We show that any transport process generally lowers the epidemic threshold because of the additional connections it generates. In contrast, considering also random walks of fractional order that in some sense are a more realistic model of human mobility, we find that these non-local transport dynamics raise the epidemic threshold in comparison to a classical local random walk. We also test our model on a realistic transport network (the Munich U-Bahn network), and carefully compare mean-field solutions with stochastic trajectories in a range of scenarios.
Funder
Deutsche Forschungsgemeinschaft
Volkswagen Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献