Handling multicollinearity in quantile regression through the use of principal component regression

Author:

Davino C.ORCID,Romano R.,Vistocco D.

Abstract

AbstractIn many fields of applications, linear regression is the most widely used statistical method to analyze the effect of a set of explanatory variables on a response variable of interest. Classical least squares regression focuses on the conditional mean of the response, while quantile regression extends the view to conditional quantiles. Quantile regression is very convenient, whereas classical parametric assumptions do not hold and/or when relevant information lies in the tails and therefore the interest is in modeling the conditional distribution of the response at locations different from the mean. A situation common to most regression applications is the presence of strong correlations between predictors. This leads to the well-known problem of collinearity. While the effects of collinearity on least squares estimates are well investigated, this is not the case for quantile regression estimates. This paper aims to explore the collinearity problem in quantile regression. First, a simulation study analyses the problem concerning different degrees of collinearity and various response distributions. Then the paper proposes using regression on latent components as a possible solution to collinearity in quantile regression. Finally, a case study shows the assessment of the quality of service in the presence of highly correlated predictors.

Publisher

Springer Science and Business Media LLC

Subject

Statistics and Probability

Reference50 articles.

1. Alhamzawi, R., Yu, K.: Variable selection in quantile regression via Gibbs sampling. J. Appl. Stat. 39(4), 799–813 (2012)

2. Ando, T., Tsay, R.S.: Quantile regression models with factor-augmented predictors and information criterion. Econom. J. 14(1), 1–24 (2011)

3. Bager, A.S.M.: Ridge parameter in quantile regression models. An application in biostatistics. Int. J. Stat. Appl. 8(2), 72–78 (2018)

4. Bayer, S.: Combining value-at-risk forecasts using penalized quantile regressions. Econom. Stat. 8, 56–77 (2018)

5. Bowerman, B.L., O’Connell, R.T.: Linear Statistical Models: An Applied Approach. PWS-KENT Publishing Co, Boston (1990)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3