A numerical investigation of hydraulic fracturing on coal seam permeability based on PFC-COMSOL coupling method

Author:

Wang Kai,Zhang Guodong,Wang Yanhai,Zhang Xiang,Li Kangnan,Guo Wei,Du Feng

Abstract

AbstractHydraulic fracturing and permeability enhancement are effective methods to improve low-permeability coal seams. However, few studies focused on methods to increase permeability, and there are no suitable prediction methods for engineering applications. In this work, PFC2D software was used to simulate coal seam hydraulic fracturing. The results were used in a coupled mathematical model of the interaction between coal seam deformation and gas flow. The results show that the displacement and velocity of particles increase in the direction of minimum principal stress, and the cracks propagate in the direction of maximum principal stress. The gas pressure drop rate and permeability increase rate of the fracture model are higher than that of the non-fracture model. Both parameters decrease rapidly with an increase in the drainage time and approach 0. The longer the hydraulic fracturing time, the more complex the fracture network is, and the faster the gas pressure drops. However, the impact of fracturing on the gas drainage effect declines over time. As the fracturing time increases, the difference between the horizontal and vertical permeability increases. However, this difference decreases as the gas drainage time increases. The higher the initial void pressure, the faster the gas pressure drops, and the greater the permeability increase is. However, the influence of the initial void pressure on the permeability declines over time. The research results provide guidance for predicting the anti-reflection effect of hydraulic fracturing in underground coal mines.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3