Transformation of minerals at the boundary of magma-coal contact zone: case study from Wolonghu Coal Mine, Huaibei Coalfield, China

Author:

Chen Xing,Zheng Liugen,Jiang Yalin,Jiang Chunlu

Abstract

AbstractMesozoic and Cenozoic magma activity in the Wolong Lake mining area of Huaibei is frequent, and the degree of magma intrusion into coal seams remarkable. On the one hand, magma intrusion affects the utilization of coal resources; on the other hand, the macro and trace elements in coal are redistributed to form new mineral types. This study uses the Wolong Lake magma intrusion coal seam as a research object. The mineral paragenesis for igneous rock, coke, and thermally-altered coal in an igneous intrusion zone is studied using SEM, XRD, and Raman spectroscopy. During igneous intrusion, the temperature and pressure of igneous rock metamorphose ambient low-rank coal to high-rank coal and coke. The response mechanism of minerals and trace elements to magmatic intrusion is discussed. The results are: ① SEM analysis shows that ankerite and pyrite are formed from magma intrusion. Both minerals are strongly developed in the magma-coal contact zone, and less well developed in thermally-altered coal. ② XRD analysis shows that igneous intrusion strongly influences the types and content of minerals in coke and thermally-altered coal. In addition to the increase amounts of ankerite and pyrite, chlorite, serpentine, and muscovite, and other secondary minerals, are generated following igneous intrusion. ③ Raman analysis suggests that thermally-altered coal possesses the characteristics of both pyrite and coke. Coke from the magma-coal boundary zone possesses the typical characteristics of pyrite. Igneous rock contains a mineral similar to pyrite, confirmed by both having similar Raman peaks. The scattering intensity of Ag indicates that the formation pressure of pyrite increases from thermally-altered coal via the boundary between the coke zone and the igneous rock.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3