Petrographic composition of coal within the Benue Trough, Nigeria and a consideration of the paleodepositional setting

Author:

Mangs A. D.,Wagner N. J.ORCID,Moroeng O. M.,Lar U. A.

Abstract

AbstractThe petrographic composition of Cretaceous-age coals hosted in the Benue Trough, Nigeria is presented and discussed in terms of the paleodepositional settings that influenced the coal-bearing formations. The Benue Trough is a failed arm of the triple junction of an inland sedimentary basin that extends in a NE-SW direction from the Gulf of Guinea in the south, to the Chad Basin in the north. A total of twenty-nine (29) coal samples were obtained from nineteen coal localities in the Upper (UBT), Middle (MBT), and Lower Benue Trough (LBT). The high average volatile matter yield, low average ash yield, high calorific value (24.82 MJ/kg, on average), and low sulphur values indicate good quality coal deposits. The organic matter is dominated by vitrinite, reported at an average of 59.3% by volume (mineral-matter free). Variation was noted in the inertinite content across three sub-regions. Liptinite macerals were not commonly observed in the studied samples and were absent in the MBT samples. Coal facies studies decipher the paleoenvironmental conditions under which the vegetation accumulated. Indices commonly used are the gelification index (GI), tissue preservation index (TPI), ground water index (GWI and variations), vegetation index (VI), and wood index (WI). Comparing the array of coal facies models applied, the MBT samples differ from the UBT and LBT samples, concurring with the coal quality data. The UBT and LBT coals formed in an upper deltaic to drier piedmont plane depositional environment, while the MBT coal formed in a lower deltaic marsh to wet forest swamp depositional environment. All samples indicate an ombrotrophic paleomire. In view of the modified equations and the plots used, interpreting depositional environments from just a single model is not reliable.

Funder

DSI-NRF

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3