Geochemistry, Mineralogy, and Coal Petrology of No. 4 Coal in Sandaoling Mine, Turpan-Hami Basin, Northwest China: Provenance and Peat Depositional Environment

Author:

Wei Jinhao1,Wei Yingchun12ORCID,Qin Guohong3,Ning Shuzheng4,Cao Daiyong12ORCID,Wang Anmin1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China

3. School of Geographical Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, China

4. China National Administration of Coal Geology (CNACG), Beijing 100038, China

Abstract

The Turpan-Hami Basin is one of the three coal-accumulating basins in Xinjiang. There is coal, natural gas, petroleum, sandstone-type uranium ore, and other ore resources in the Jurassic strata developed inside. This study aims to gain a deeper understanding of the formation process of ore resources in the Turpan-Hami Basin by studying the provenance and depositional environment of No. 4 coal in the Sandaoling Mine. The results show that No. 4 coal is extra-low ash yield and extra-low sulfur coal. Compared with common Chinese coals and world hard coals, the trace element content in No. 4 coal is normal or depleted. The minerals in coal are mainly clay minerals, silica and sulfate minerals, and carbonates. The diagrams of Al2O3, TiO2, Sr/Y, L,a/Yb, and the REY geochemical features indicate that the Paleozoic intermediates and felsitic igneous rocks in Harlik Mountain and Eastern Bogda Mountain are the main provenance of No. 4 coal. The syngenetic siderite, Sr/Ba, Th/U, total sulfur content, and maceral indices indicate that No. 4 coal was formed in a salt-lake environment, and the climate changed from dry and hot to warm and humid.

Funder

National Key Research and Development Plan of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3