Characteristics of water contamination in abandoned coal mines: a case study on Yudong River area, Kaili, Guizhou Province, China

Author:

Li Xiangdong,Cai Jieying,Chen Di,Feng Qiyan

Abstract

AbstractThe seasonal and spatial changes in the chemical composition of the water in abandoned mine drainages and rivers in Yudong River area in the years of 2017–2018 were analyzed. The effects of mine water drainage on the seasonality and physicochemical properties of the river water after mine closure were evaluated, and the feasibility of irrigation using river water and the degree of pollution to farmland were assessed using the Water Quality Standard for Farmland Irrigation. The results show that the mine water has low pH value (< 3.5–4) and high levels of total hardness, SO42−, Fe, Al, and Zn. In addition, the pH of the mine water is negatively correlated with the presence of other metal ions. The correlation coefficient between the chemical oxygen demand (COD) and Fe reached 0.989. While the pollution levels of Pinglu and Baishui rivers were low, the confluence region of the two rivers was seriously polluted. However, only the levels of Fe and Cd slightly exceeded the Surface Water Environmental Quality Standard after the confluence of Yudong and Chongan rivers. Overall, the heavy pollution type of the confluent river is consistent with mine water pollution. The water quality is slightly better in the dry season compared than in the high-water period. Sulfate and Fe content decreased by 39 and 16 mg/L, respectively, and Cd content decreased two-fold. Despite these findings, this study shows that from 2017 to 2018, the pH and Cd content of the rivers at the confluence exceeded the irrigation limit and the water quality continued to deteriorate, which may pose a soil contamination risk. Long-term use of the river for irrigation water may cause toxic elements such as Cd, Fe, Mn, SO42−, Al, and F- to enter the food chain, thereby endangering the life and health of villagers in Yudong River area.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3