Insights from principal component analysis applied to Py-GCMS study of Indian coals and their solvent extracted clean coal products

Author:

Roy Abyansh,Dhawan Heena,Upadhyayula Sreedevi,Kodamana Hariprasad

Abstract

AbstractThe present work aims at studying five Indian coals and their solvent extracted clean coal products using Py-GCMS analysis and correlating the characterization data using theoretical principal component analysis. The pyrolysis products of the original coals and the super clean coals were classified as mono-, di- and tri-aromatics, while other prominent products that were obtained included cycloalkanes, n-alkanes, and alkenes ranging from C10–C29. The principal component analysis is a dimensionality reduction technique that reduced the number of input variables in the characterization dataset and gave inferences on the relative composition of constituent compounds and functional groups and structural insights based on scores and loading plots which were consistent with the experimental observations. ATR-FTIR studies confirmed the reduced concentration of ash in the super clean coals and the presence of aromatics. The Py-GCMS data and the ATR-FTIR spectra led to the conclusion that the super clean coals behaved similarly for both coking and non-coking coals with high aromatic concentrations as compared to the raw coal. Neyveli lignite super clean coal was found to show some structural similarity with the original coals, whereas the other super clean coals showed structural similarity within themselves but not with their original coal samples confirming the selective action of the e,N solvent in solubilizing the polycondensed aromatic structures in the coal samples.

Funder

Department of Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3